US010695046B2 ### (12) United States Patent Sugimoto et al. ## (54) TISSUE ANCHOR AND ANCHORING SYSTEM (71) Applicant: Edwards Lifesciences Corporation, Irvine, CA (US) (72) Inventors: Hiroatsu Sugimoto, Cambridge, MA (US); Aaron M. Call, Mesa, AZ (US); Karl R. Leinsing, Dover, NH (US) (73) Assignee: Edwards Lifesciences Corporation, Irvine, CA (US) (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 179 days. This patent is subject to a terminal dis- claimer. (21) Appl. No.: 15/680,742 (22) Filed: Aug. 18, 2017 (65) Prior Publication Data US 2018/0028171 A1 Feb. 1, 2018 ### Related U.S. Application Data - (60) Continuation of application No. 14/581,264, filed on Dec. 23, 2014, now Pat. No. 9,814,454, which is a (Continued) - (51) Int. Cl. A61B 17/04 (2006.01) A61B 17/00 (2006.01) - (52) **U.S. Cl.**CPC *A61B 17/0401* (2013.01); *A61B 17/00234* (2013.01); *A61B 17/0469* (2013.01); (Continued) ### (10) Patent No.: US 10,695,046 B2 (45) **Date of Patent:** *Jun. 30, 2020 ### (58) Field of Classification Search CPC A61B 17/0469; A61B 17/0487; A61B 2017/0496; A61B 17/00234; A61B 17/0401 See application file for complete search history. ### (56) References Cited ### U.S. PATENT DOCUMENTS 2,143,910 A 3,604,488 A 1/1939 Didusch 9/1971 Wishart et al. (Continued) ### FOREIGN PATENT DOCUMENTS EP 1016377 7/2000 EP 1034753 A1 9/2000 (Continued) ### OTHER PUBLICATIONS Cardiac Surgery Renaissance, Anatomical Landscape; Composite Profile of CABG and Valve Procedures, Apr. 25, 1996, Cardiology Roundtable Interviews. (Continued) Primary Examiner — Gregory A Anderson (74) Attorney, Agent, or Firm — Thomas C. Richardson ### (57) ABSTRACT A tissue anchor includes an anchor member formed from a generally flexible material. An activation member, which may be a tensioning member, causes proximal and distal end portions of the anchor member to move toward each other into a shortened configuration suitable for anchoring against the tissue. The tissue anchor can optionally be deployed and activated using a catheter device. ### 19 Claims, 15 Drawing Sheets #### 7/1995 Scheinman et al. Related U.S. Application Data 5,429,131 A 5,449,368 A 9/1995 Kuzmak continuation of application No. 12/273,670, filed on 5,450,860 A 9/1995 O'Connor 5,452,513 A 9/1995 Zinnbauer et al. Nov. 19, 2008, now Pat. No. 8,951,286, which is a 5,464,023 A 11/1995 Viera division of application No. 11/174,951, filed on Jul. 5, 5,464,404 A 11/1995 Abela et al. 2005, now Pat. No. 8,951,285. 5,474,518 A 12/1995 Fairer Velazquez 5.477,856 A 12/1995 Lundquist 5,545,178 A 8/1996 Kensey et al. (52) U.S. Cl. 5,565,122 A 10/1996 Zinnbauer et al. CPC . A61B 17/0487 (2013.01); A61B 2017/00243 5,571,215 A 11/1996 Sterman et al. (2013.01); A61B 2017/00783 (2013.01); A61B 5,593,424 A 1/1997 Northrup 5,601,572 A 2/1997 Middleman et al. 2017/0406 (2013.01); A61B 2017/048 5,607,471 A 3/1997 Seguin et al. (2013.01); A61B 2017/0417 (2013.01); A61B 5,623,943 A 4/1997 Hackett et al. 2017/0419 (2013.01); A61B 2017/0458 5/1997 5,626,590 A Wilk (2013.01); A61B 2017/0464 (2013.01); A61B 5/1997 5,626,609 A Zvenyatsky et al. 5,640,955 A 6/19972017/0496 (2013.01) Ockuly et al. 5,643,317 A 7/1997 Pavenik et al. 5,662,681 A 9/1997 Nash (56)**References Cited** 5,669,919 A 9/1997 Sanders et al. 5,674,279 10/1997 Wright et al. U.S. PATENT DOCUMENTS 5,676,653 A 10/1997 Taylor et al. 5.682.906 A 11/1997 Sterman et al. 3,656,185 A 4/1972 Carpentier 5,683,402 A 11/1997 Cosgrove et al. 3,674,014 A 7/1972 Tillander 11/1997 Cope et al. 5,690,656 A 3,794,041 A 2/1974 Frei et al. 5,702,397 A 12/1997 Goble 3,840,018 A 10/1974 Heifetz 5,702,398 A 12/1997 Tarabishy 3,841,521 A 10/1974 Jarvik 5,706,827 A 1/1998 Ehr et al. 3,881,366 A 5/1975 Bradley et al. 5,709,695 A 1/1998 Northrup, III La Russa 3,898,701 A 8/1975 5,716,367 A 2/1998 Koike et al. 3,959,960 A 6/1976 Santos 5,716,370 A 2/1998 Williamson, IV et al. 3.986,493 A 10/1976 Hendren, III 5.716.397 A 2/1998 Mveers 3.995.619 A 12/1976 Glatzer 5,716,399 A 2/1998 Love 4,042,979 A 4,055,861 A 4,118,805 A 8/1977 Angell 5,728,116 A 3/1998 Rosenman 11/1977 Carpentier et al. 5,730,150 A 3/1998 Peppel et al. 10/1978 Reimels 5,749,371 A 5/1998 Zadini et al. 4,214,349 A 7/1980 Munch 5,776,080 A 7/1998 Thome et al. 4,258,705 A 3/1981 Sorensen et al. 5,776,189 A 7/1998 Khalid 4,261,342 A 4/1981 Aranguren Duo 5,782,844 A 7/1998 Yoon et al. 4,290,151 A 9/1981 Massana 5,797,939 A 8/1998 Yaan 4,369,787 A 1/1983 Lasner et al. 5.810.882 A 9/1998 Bolduc et al. 4,434,828 A 3/1984 Trincia 5,813,996 A 9/1998 Sl. Germain et al. 10/1984 4,473,928 A Johnson 5,824,066 A 10/1998 Gross 4,489,446 A 12/1984 Reed Fleega 5,827,300 A 10/1998 4,532,926 A 8/1985 O'Holia 5,829,447 A 11/1998 Stevens et al. 4,602,911 A 7/1986 Ahmadi et al. 5,830,221 A 11/1998 Stein et al. 4,625,727 A 12/1986 Leiboff 5.830.224 A 11/1998 Cohn et al. 4,712,549 A 12/1987 Peters et al. 5,843,120 A 12/1998 Israel et al. 4,778,468 A 10/1988 Hunt et al. 5,851,185 A 12/1998 Berns 4,809,713 A 3/1989 Grayzel 5,855,614 A 1/1999 Stevens et al. 4,917,698 A Carpentier et al. 4/1990 5,860,920 A 1/1999 McGee et al. 4,945,912 A 4,961,738 A 8/1990 Langberg 5,868,733 A 2/1999 Ockuly et al. 10/1990 Mackin 5,876,373 A 3/1999 Giba et al. 5,016,353 A 5/1991 Iten 5,879,366 A 3/1999 5,041,129 A 8/1991 Hayhurst et al. 5,888,240 A 3/1999 Carpentier et al. 5,041,130 A 8/1991 Cosgrove et al. 5,906,579 A 5/1999 Vander Salm et al. 5,042,707 A 8/1991 Taheri 5,911,720 A 6/1999 Bourne et al. 5,061,277 A 10/1991 Carpentier et al. 7/1999 5,928,224 A Laufer 5,064,431 A Gilbertson et al. 11/1991 8/1999 5,931,818 A Werp et al. 5,104,407 A 4/1992 Lam et al. 5,935,098 A 8/1999 Blaisdell et al. 5,108,420 A 4/1992 Marks 5,944,738 A 8/1999 Amplatz et al. 5,123,914 A 6/1992 Cope 5,957,953 A 9/1999 DiPoto et al. 5,171,232 A 12/1992 Castillo et al. 5,961,440 A 10/1999 Schweich, Jr. et al. 5,171,259 A 12/1992 Inoue 5,961,539 A 10/1999 Northrup, III et al. 5,192,302 A 3/1993 Kensey et al. 11/1999 5,980,515 A Tu 5,201,880 A 4/1993 Wright et al. 5,984,939 A 11/1999 Yaan 5,203,777 A 4/1993 Lee 5,984,959 A 6,015,414 A 11/1999 Robertson et al. 5,258,008 A 11/1993 Wilk 1/2000 Werp et al. 5,300,034 A 4/1994 Behnke et al. 6,027,514 A 2/2000 Stine et al. 5,304,190 A 4/1994 Reckelhoff et al. 6,042,554 A 3/2000 Rosenman et al. 5,306,234 A 4/1994 Johnson 6.042.581 A 3/2000 Ryan et al. 5,306,296 A 4/1994 Wright et al. 6,045,497 A 4/2000 Schweich, Jr. et al. 5,325,845 A 7/1994 Adair 6,050,472 A 4/2000 Shibata 5,337,736 A 8/1994 Reddy 6,050,936 A 4/2000 Schweich, Jr. et al. 5,346,498 A 9/1994 Greelis et al. 6,059,715 A 5/2000 Schweich, Jr. et al. 5,360,444 A 11/1994 Kusuhara 5,364,365 A 6,068,637 A 5/2000 Popov et al. 11/1994 Wortrich 5,364,393 A 11/1994 6,068,648 A 5/2000 Cole et al. Auth et al 5,383,852 A 1/1995 Stevens-Wright 6,071,292 A 6/2000 Makower et al. | (56) | | Referen | ces Cited | 6,554,845 B1
6,554,852 B1 | | Fleenor et al.
Oberlander | |--------------------|------------------|--------------------|---------------------------------------|------------------------------|------------------|---------------------------------------| | | U.S. | PATENT | DOCUMENTS | 6,562,019 B1 | 5/2003 | Sell | | | | | | 6,564,805 B2 | | Garrison et al. | | 6,074,3 | | | Anderson et al. | 6,565,562 B1
6,565,603 B2 | 5/2003
5/2003 | | | 6,074,4
6,074,4 | | | Gardiner et al.
Peredo | 6,569,198 B1 | | Wilson et al. | | 6,080,1 | | | Shaw et al. | 6,579,297 B2 | | Bicek et al. | | 6,086,5 | | | Altman et al. | 6,589,160 B2 | | Schweich, Jr. et al. | | 6,099,4 | | 8/2000 | Denker | 6,589,208 B2 | | Ewers et al. | | 6,102,9 | | | Campbell | 6,592,593 B1
6,594,517 B1 | | Parodi et al. | | 6,106,5 | | | Magovern et al. | 6,596,014 B2 | 7/2003
7/2003 | Levinson et al. | | 6,110,2
6,113,6 | | | Hinnenkamp
Allen et al. | 6,602,288 B1 | | Cosgrove et al. | | 6,126,6 | | | Posey et al. | 6,602,289 B1 | | Colvin et al. | | 6,132,3 | | | Cookston et al. | 6,613,078 B1 | | Barone | | RE36,9 | | 11/2000 | | 6,613,079 B1 | | Wolinsky et al. | | 6,143,0 | | | Campbell et al. | 6,619,291 B2
6,626,899 B2 | | Hlavka et al.
Houser et al. | | 6,159,2 | | | Bonutti et al. | 6,626,917 B1 | 9/2003 | | | 6,159,2
6,162,1 | | | Sparer et al.
Schweich, Jr. et al. | 6,626,919 B1 | | Swanstrom | | 6,165,1 | | | Schweich, Jr. et al. | 6,626,930 B1 | | Allen et al. | | 6,165,1 | | | Schweich, Jr. et al. | 6,629,534 B1 | | St. Goar et al. | | 6,165,1 | 183 A | | Kuehn et al. | 6,629,921 B1 | 10/2003 | | | 6,173,1 | | | Gabriel | 6,651,671 B1
6,652,556 B1 | 11/2003 | Donlon et al.
VanTassel et al. | | | 332 B1 | | Loch et al. Mortier et al. | 6,655,386 B1 | 12/2003 | Makower et al. | | | 411 B1
040 B1 | | Wright | 6,656,221 B2 | 12/2003 | | | | 353 B1 | | Makower et al. | 6,669,687 B1 | 12/2003 | Saadat | | | 017 B1 | 3/2001 | Brock et al. | 6,669,707 B1 | 12/2003 | Swanstrom et al. | | | 395 B1 | | Levinson | 6,676,702 B2
6,682,558 B2 | 1/2004 | Mathis
Tu et al. | | | 347 B1 | 4/2001 | | 6,689,125 B1 | | Keith et al. | | | 432 B1
510 B1 | | Solem et al.
Carpentier et al. | 6,689,164 B1 | | Sequin | | | 587 B1 | | Makower | 6,695,866 B1 | | Kuehn et al. | | 6,231,6 | 502 B1 | 5/2001 | Carpentier et al. | 6,699,263 B2 | 3/2004 | | | |)92 B1 | | Qin et al. | 6,702,825 B2
6,702,826 B2 | | Frazier et al.
Liddicoat et al. | | | 781 B1 | 7/2001 | | 6,702,826 B2 | | Mikus et al. | | | 819 B1
903 B1 | | Oz et al.
Rosenthal et al. | 6,706,065 B2 | | Langberg et al. | | | 317 B1 | | Makower et al. | 6,709,385 B2 | 3/2004 | Forsell | | | 556 B1 | | Bolduc et al. | 6,709,456 B2 | | Langberg et al. | | | 257 B1 | | Hall et al. | 6,711,444 B2
6,718,985 B2 | | Koblish
Hlavka et al. | | | 133 B1
147 B1 | 10/2001 | Tu et al. | 6,719,786 B2 | | Ryan et al. | | 6,315,7 | | | Djurovic | 6,723,038 B1 | 4/2004 | | | | 263 B1 | | Levinson | 6,726,716 B2 | 4/2004 | | | | 281 B1 |
11/2001 | | 6,726,717 B2 | 4/2004 | Alfieri et al.
Levinson | | | 746 B1 | | Gambale | 6,730,112 B2
6,730,121 B2 | | Ortiz et al. | | 6,332,8 | 089 B1
893 B1 | | Acker et al. Mortier et al. | 6,733,509 B2 | | Nobles et al. | | | 543 B1 | 3/2002 | | 6,736,808 B1 | | Motamedi et al. | | |)30 B1 | 3/2002 | Aldrich et al. | 6,746,472 B2 | | Frazier et al. | | | 559 B1 | | Houser et al. | 6,749,630 B2
6,752,813 B2 | | McCarthy et al. Goldfarb et al. | | | 348 B1
472 B1 | | Gabbay
Hall et al. | 6,764,310 B1 | | Ichihashi et al. | | | 720 B1 | | Stevens et al. | 6,764,500 B1 | 7/2004 | | | | 580 B2 | | Mortier et al. | 6,764,510 B2 | | Vidlund et al. | | | 760 B1 | | Williamson, IV et al. | 6,764,810 B2 | | Ma et al. | | | 781 B1 | | Langberg et al. | 6,769,434 B2
6,770,083 B2 | | Liddicoat et al.
Seguin | | | 120 B1
193 B1 | | McCarthy et al.
Tu et al. | 6,786,924 B2 | | Ryan et al. | | | 596 B1 | | Ortiz et al. | 6,786,925 B1 | 9/2004 | | | | 522 B2 | | Gambale et al. | 6,790,231 B2 | 9/2004 | | | |)54 B1 | | Stevens | 6,793,618 B2
6,797,001 B2 | 9/2004
9/2004 | Schweich, Jr. et al.
Mathis et al. | | | 076 B1 | 10/2002 | | 6,797,001 B2
6,797,002 B2 | 9/2004 | | | | 366 B1
392 B1 | 10/2002
10/2002 | | 6,802,319 B2 | 10/2004 | | | | 184 B1 | | Chan et al. | 6,805,710 B2 | 10/2004 | | | 6,503,2 | 274 B1 | 1/2003 | Howanec, Jr. et al. | 6,805,711 B2 | 10/2004 | ~ 3 | | | 303 B1 | | Garibaldi | 6,855,126 B2 | | Flinchbaugh
McCorthy | | | 338 B1
952 B2 | | Gundry
Vesely | 6,858,039 B2
6,866,673 B2 | | McCarthy
Oren et al. | | | 772 B1 | | Sherts et al. | 6,884,250 B2 | | Monassevitch et al. | | | 198 B1 | | Vidlund et al. | 6,893,459 B1 | | Macoviak | | | 314 B2 | | Langberg et al. | 6,908,478 B2 | | Alferness et al. | | | 766 B2 | | Hall et al. | 6,908,482 B2 | | McCarthy et al. | | | 230 B1 | | Flaherty et al. | 6,913,608 B2 | | Liddicoat et al. | | 6,547,8 | 801 B1 | 4/2003 | Dargent et al. | 6,918,917 B1 | 1/2005 | Nguyen et al. | | (56) | | Referen | ces Cited | 7,562,660 B2 | 7/2009 | | |------|------------------------------|--------------------|------------------------------------|------------------------------|------------------|--------------------------------------| | | IIS E | PATENT | DOCUMENTS | 7,563,267 B2
7,563,273 B2 | | Goldfarb et al.
Goldfarb et al. | | | 0.5.1 | 2111111 | DOCUMENTS | 7,569,062 B1 | | Kuehn et al. | | (| 6,921,407 B2 | 7/2005 | Nguyen et al. | 7,585,321 B2 | 9/2009 | | | | 6,923,823 B1 | | Bartlett et al. | 7,588,582 B2
7,591,826 B2 | 9/2009
9/2009 | Starksen et al.
Alferness et al. | | | 6,926,730 B1
6,942,694 B2 | | Nguyen et al.
Liddicoat et al. | 7,604,646 B2 | 10/2009 | | | | 6,945,978 B1 | 9/2005 | | 7,608,091 B2 | 10/2009 | Goldfarb et al. | | (| 6,960,217 B2 | 11/2005 | Bolduc | 7,608,103 B2 | 10/2009 | | | | 6,964,683 B2 | | Kowalsky et al. | 7,625,403 B2
7,632,303 B1 | 12/2009 | Krivoruchko
Stalker et al. | | | 6,964,684 B2
6,964,686 B2 | 11/2005 | Ortiz et al. | 7,635,329 B2 | 12/2009 | | | | 6,976,995 B2 | | Mathis et al. | 7,635,386 B1 | | Gammie | | | 6,986,775 B2 | | Morales et al. | 7,655,015 B2 | | Goldfarb et al.
Thornton et al. | | | 6,989,028 B2
6,997,951 B2 | | Lashinski et al.
Solem et al. | 7,666,204 B2
7,682,319 B2 | | Martin et al. | | | 7,004,176 B2 | 2/2006 | | 7,682,369 B2 | 3/2010 | | | , | 7,004,958 B2 | | Adams et al. | 7,686,822 B2 | | Shayani | | | 7,007,798 B2 | | Happonen et al. | 7,699,892 B2
7,704,269 B2 | | Rafiee et al.
St. Goar et al. | | | 7,011,669 B2
7,011,682 B2 | | Kimblad
Lashinski et al. | 7,704,277 B2 | 4/2010 | Zakay et al. | | | 7,018,406 B2 | | Seguin et al. | 7,722,666 B2 | 5/2010 | Lafontaine | | | 7,037,334 B1 | | Hlavka et al. | 7,731,732 B2 | 6/2010 | Ken
Goldfarb et al. | | | 7,077,850 B2
7,077,862 B2 | | Kortenbach
Vidlund et al. | 7,736,388 B2
7,748,389 B2 | | Salahieh et al. | | | 7,077,862 B2
7,087,064 B1 | 8/2006 | | 7,749,250 B2 | | Stone et al. | | • | 7,101,395 B2 | 9/2006 | Tremulis et al. | 7,753,924 B2 | | Starksen et al. | | | 7,101,396 B2 | | Artof et al. | 7,758,632 B2
7,771,455 B2 | 8/2010 | Hojeibane et al. | | | 7,112,207 B2
7,115,110 B2 | | Allen et al. Frazier et al. | 7,780,726 B2 | 8/2010 | | | | 7,118,595 B2 | | Ryan et al. | 7,871,368 B2 | | Zollinger et al. | | | 7,125,421 B2 | | Tremulis et al. | 7,871,433 B2
7,883,475 B2 | | Lattouf Dupont et al. | | | 7,150,737 B2
7,159,593 B2 | | Purdy et al. McCarthy et al. | 7,883,538 B2 | | To et al. | | | 7,166,127 B2 | | Spence et al. | 7,892,281 B2 | 2/2011 | Seguin et al. | | , | 7,169,187 B2 | 1/2007 | Datta et al. | 7,927,370 B2 | | Webler et al. | | | 7,172,625 B2 | | Shu et al. | 7,927,371 B2
7,931,580 B2 | | Navia et al.
Gertner et al. | | | 7,175,660 B2
7,186,262 B2 | 3/2007 | Cartledge et al. | 7,942,927 B2 | 5/2011 | Kaye et al. | | | 7,186,264 B2 | | Liddicoat et al. | 7,947,056 B2 | | Griego et al. | | | 7,189,199 B2 | | McCarthy et al. | 7,955,315 B2
7,955,377 B2 | | Feinberg et al.
Melsheimer | | | 7,192,443 B2
7,211,094 B2 | | Solem et al. Gannoe et al. | 7,992,567 B2 | | Hirotsuka et al. | | | 7,220,277 B2 | | Arru et al. | 7,993,368 B2 | | Gambale et al. | | | 7,226,467 B2 | | Lucatero et al. | 7,993,397 B2
8,012,201 B2 | | Lashinski et al.
Lashinski et al. | | | 7,226,477 B2
7,226,647 B2 | 6/2007 | Cox
Kasperchik et al. | 8,034,103 B2 | | Burriesci et al. | | | 7,229,452 B2 | 6/2007 | | 8,052,592 B2 | 11/2011 | Goldfarb et al. | | , | 7,238,191 B2 | 7/2007 | Bachmann | 8,057,493 B2 | | Goldfarb et al. | | | 7,247,134 B2
7,288,097 B2 | | Vidlund et al. | 8,062,355 B2
8,070,804 B2 | | Figulla et al.
Hyde et al. | | | 7,288,097 B2
7,294,148 B2 | 10/2007
11/2007 | McCarthy | 8,070,805 B2 | 12/2011 | Vidlund et al. | | , | 7,311,728 B2 | 12/2007 | Solem et al. | 8,075,616 B2 | 12/2011 | Solem et al. | | | 7,311,729 B2 | | Mathis et al. | 8,100,964 B2
8,123,801 B2 | 2/2012 | Spence
Milo | | | 7,314,485 B2
7,316,710 B1 | 1/2008 | Cheng et al. | 8,142,493 B2 | | Spence et al. | | , | 7,329,279 B2 | | Haug et al. | 8,142,495 B2 | | Hasenkam et al. | | | 7,329,280 B2 | | Bolling et al. | 8,142,496 B2
8,147,542 B2 | | Berreklouw
Maisano et al. | | | 7,335,213 B1
7,361,190 B2 | | Hyde et al.
Shaoulian et al. | 8,152,844 B2 | | Rao et al. | | | 7,364,588 B2 | | Mathis et al. | 8,163,013 B2 | 4/2012 | Machold et al. | | | 7,377,941 B2 | | Rhee et al. | 8,172,871 B2 | 5/2012 | Ken
Goldfarb et al. | | | 7,390,329 B2
7,404,824 B1 | | Westra et al. Webler et al. | 8,187,299 B2
8,187,324 B2 | | Webler et al. | | | 7,431,692 B2 | | Zollinger et al. | 8,202,315 B2 | 6/2012 | Hlavka et al. | | , | 7,442,207 B2 | 10/2008 | Rafiee | 8,206,439 B2 | 6/2012 | | | | 7,452,376 B2 | | Lim et al. | 8,216,302 B2
8,231,671 B2 | 7/2012 | Wilson et al. | | | 7,455,690 B2
7,485,142 B2 | 2/2009 | Cartledge et al.
Milo | 8,262,725 B2 | | Subramanian | | • | 7,485,143 B2 | 2/2009 | Webler et al. | 8,265,758 B2 | | Policker et al. | | | 7,500,989 B2 | | Solem et al. | 8,277,502 B2 | 10/2012 | | | | 7,507,252 B2
7,510,575 B2 | 3/2009 | Lashinski et al.
Spenser et al. | 8,287,584 B2
8,287,591 B2 | | Salahieh et al.
Keidar et al. | | | 7,510,575 B2
7,510,577 B2 | | Moaddeb et al. | 8,292,884 B2 | | Levine et al. | | , | 7,527,647 B2 | 5/2009 | Spence | 8,303,608 B2 | 11/2012 | Goldfarb et al. | | | 7,530,995 B2 | 5/2009 | Quijano et al. | 8,323,334 B2 | | Deem et al. | | | 7,549,983 B2
7,559,936 B2 | 6/2009
7/2009 | | 8,328,868 B2
8,333,777 B2 | | Paul et al.
Schaller et al. | | | 1,559,930 D Z | 112009 | LCVIIIC | 0,333,111 D 2 | 12/2012 | benanci et al. | | (56) | | | Referen | ces Cited | 9,011,520 B2 | | Miller et al. | |------|----------------------------|--------|---------|----------------------------------|------------------------------------|------------------|--| | | ī | I S I | PATENT | DOCUMENTS | 9,011,530 B2
9,023,100 B2 | 4/2015
5/2015 | Reich et al.
Quadri et al. | | | | J.G. I | ALLIVI | BOCCIVIENTS | 9,072,603 B2 | | Tuval et al. | | | 8,343,173 | B2 | 1/2013 | Starksen et al. | 9,107,749 B2 | | Bobo et al. | | | 8,343,174 | | | Goldfarb et al. | 9,119,719 B2
9,125,632 B2 | | Zipory et al.
Loulmet et al. | | | 8,343,213 | | | Salahieh et al. | 9,125,742 B2 | | Yoganathan et al. | | | 8,349,002 I
8,353,956 I | | 1/2013 | Miller et al. | 9,138,316 B2 | | Bielefeld | | | 8,357,195 | | 1/2013 | | 9,173,646 B2 | 11/2015 | | | | 8,382,829 | В1 | 2/2013 | Call et al. | 9,180,005 B1 | | Lashinski et al. | | | 8,388,680 | | | Starksen et al. | 9,180,007 B2
9,192,472 B2 | | Reich et al.
Gross et al. | | | 8,393,517 3
8,419,825 3 | | 3/2013 | Burgler et al. | 9,198,756 B2 | | Aklog et al. | | | 8,430,926 | | 4/2013 | | 9,226,825 B2 | 1/2016 | Starksen et al. | | | 8,449,573 | B2 | 5/2013 | | 9,265,608 B2 | | Miller et al. | | | 8,449,599 | | | Chau et al. | 9,326,857 B2
9,414,921 B2 | | Cartledge et al.
Miller et al. | | | 8,454,686 I
8,460,370 I | | 6/2013 | Alkhatib
Zakay | 9,427,316 B2 | | Schweich, Jr. et al. | | | 8,460,371 | | | Hlavka et al. | 9,474,606 B2 | 10/2016 | Zipory et al. | | | 8,475,491 | | 7/2013 | Milo | 9,526,613 B2 | | Gross et al. | | | 8,475,525 | | | Maisano et al. | 9,561,104 B2
9,693,865 B2 | | Miller et al. Gilmore et al. | | | 8,480,732 | | | Subramanian
Tsukashima et al. | 9,730,793 B2 | | Reich et al. | | | 8,518,107 I
8,523,940 I | | | Richardson et al. | 9,788,941 B2 | | Hacohen | | | 8,551,161 | | 10/2013 | | 9,801,720 B2 | | Gilmore et al. | | | 8,585,755 | | | Chau et al. | 9,814,454 B2 | | Sugimoto A61B 17/00234
Gilmore et al. | | | 8,591,576 B,608,797 B | | | Hasenkam et al.
Gross et al. | 9,907,547 B2
10,368,852 B2 | | Gilliore et al.
Gerhardt et al. | | | 8,628,569 | | |
Benichou et al. | 2001/0005787 A1 | | Oz et al. | | | 8,628,571 | | | Hacohen et al. | 2001/0021874 A1 | | Carpentier et al. | | | 8,641,727 | | | Starksen et al. | 2001/0039436 A1 | | Frazier et al. | | | 8,652,202 | | | Alon et al. | 2001/0049492 A1
2001/0051815 A1 | 12/2001 | Frazier et al.
Esplin | | | 8,652,203 I
8,679,174 I | | | Quadri et al. Ottma et al. | 2002/0013571 A1 | | Goldfarb et al. | | | 8,685,086 | | | Navia et al. | 2002/0016628 A1 | | Langberg et al. | | | 8,728,097 | | | Sugimoto et al. | 2002/0019649 A1 | | Sikora et al. | | | 8,728,155 | | | Montorfano et al. | 2002/0022862 A1
2002/0026198 A1 | | Grafton et al.
Ockuly et al. | | | 8,734,467 I
8,734,699 I | | | Miller et al.
Heideman et al. | 2002/0026136 A1
2002/0026216 A1 | | Grimes | | | 8,740,920 | | | Goldfarb et al. | 2002/0029080 A1 | | Mortier et al. | | | 8,747,463 | | | Fogarty et al. | 2002/0042621 A1 | | Liddicoat et al. | | | 8,778,021 | | | Cartledge | 2002/0072758 A1
2002/0082525 A1 | | Reo et al.
Oslund et al. | | | 8,784,481 3
8,790,367 3 | | | Alkhatib et al.
Nguyen et al. | 2002/0082323 A1
2002/0087048 A1 | | Brock et al. | | | 8,790,394 | | | Miller et al. | 2002/0087169 A1 | 7/2002 | Brock et al. | | | 8,795,298 | | | Hernlund et al. | 2002/0087173 A1 | | Alferness et al. | | | 8,795,355 | | | Alkhatib | 2002/0087178 A1
2002/0095167 A1 | | Nobles et al.
Liddicoat et al. | | | 8,795,356 I
8,795,357 I | | | Quadri et al.
Yohanan et al. | 2002/0093107 A1
2002/0100485 A1 | | Stevens et al. | | | 8,808,366 | | | Braido et al. | 2002/0103532 A1 | | Langberg et al. | | | 8,808,368 | | 8/2014 | Maisano et al. | 2002/0107531 A1 | | Schreck et al. | | | 8,845,717 | | 9/2014 | Khairkhahan et al. | 2002/0128708 A1
2002/0151916 A1 | | Northrup, III et al.
Muramatsu et al. | | | 8,845,723 | | 9/2014 | Spence et al. | 2002/0151910 A1
2002/0151970 A1 | | Garrison et al. | | | 8,852,261 1
8,852,272 1 | | | Gross et al. | 2002/0156526 A1 | | Hlavka et al. | | | 8,858,623 | B2 | | Miller et al. | 2002/0165535 A1 | | Lesh et al. | | | 8,864,822 | | | Spence et al. | 2002/0169358 A1
2002/0169359 A1 | | Mortier et al. McCarthy et al. | | | 8,870,948 I
8,870,949 I | | 10/2014 | Erzberger et al. | 2002/0169502 A1 | 11/2002 | | | | 8,689,861 | | | Skead et al. | 2002/0169504 A1 | 11/2002 | Alferness et al. | | | 8,888,843 | | | Khairkhahan et al. | 2002/0173841 A1 | | Ortiz et al. | | | 8,894,702 | | | Quadri et al. | 2002/0177904 A1
2002/0183766 A1 | 11/2002 | Huxel et al. | | | 8,911,461 1
8,911,494 1 | | | Traynor et al. Hammer et al. | 2002/0183700 A1
2002/0183836 A1 | | Liddicoat et al. | | | 8,926,696 | | | Cabiri et al. | 2002/0183837 A1 | | Streeter et al. | | | 8,926,697 | | | Gross et al. | 2002/0183838 A1 | | Liddicoat et al. | | | 8,932,343 | B2 | | Alkhatib et al. | 2002/0183841 A1 | | Cohn et al. Santamore et al. | | | 8,932,348 I
8,940,044 I | | | Solem et al.
Hammer et al. | 2002/0188170 A1
2002/0188301 A1 | | Dallara et al. | | | 8,940,044 | | | Sugimoto | 2002/0188350 A1 | | Arru et al. | | | 8,951,285 | | | Sugimoto et al. | 2002/0198586 A1 | 12/2002 | | | | 8,951,286 | | | Sugimoto A61B 17/00234 | 2003/0018358 A1 | | Saadat | | | 0.061.505 | D2 | 2/2015 | 606/232 | 2003/0050693 A1 | | Quijano et al. | | | 8,961,595 B,961,602 B | | | Alkhatib
Kovach et al. | 2003/0069593 A1
2003/0069636 A1 | | Tremulis et al. Solem et al. | | | 8,979,922 | | | Jayasinghe et al. | 2003/0009030 A1
2003/0078465 A1 | | Pai et al. | | | 8,992,604 | B2 | | Gross et al. | 2003/0078653 A1 | | Vesely et al. | | | 9,005,273 | B2 | 4/2015 | Salahieh et al. | 2003/0078654 A1 | 4/2003 | Taylor et al. | | | | | | | | | | | (56) | | Referen | ces Cited | 2005/0049681 | | | Greenhalgh et al. | |------------------------------|------------|--------------------|-----------------------------------|------------------------------|----|--------------------|------------------------------------| | - | II Q E | DATENIT | DOCUMENTS | 2005/0049692
2005/0055038 | | 3/2005
3/2005 | Numamoto et al.
Kelleher et al. | | | U.S. I | ALLINI | DOCUMENTS | 2005/0055087 | | 3/2005 | | | 2003/0078671 | A1 | 4/2003 | Lesniak et al. | 2005/0055089 | A1 | 3/2005 | Macoviak et al. | | 2003/0083538 | A1 | 5/2003 | Adams et al. | 2005/0060030 | | | Lashinski et al. | | 2003/0105474 | | 6/2003 | | 2005/0065550
2005/0065601 | | 3/2005 | Starksen et al.
Lee et al. | | 2003/0105519 | | | Fasol et al.
Alferness et al. | 2005/0070999 | | 3/2005 | Spence | | 2003/0105520
2003/0114901 | | | Loeb et al. | 2005/0075723 | | 4/2005 | Schroeder et al. | | 2003/0120340 | | | Liska et al. | 2005/0075727 | | 4/2005 | Wheatley | | 2003/0130730 | | | Cohn et al. | 2005/0090827 | | | Gedebou | | 2003/0144657 | | | Bowe et al. | 2005/0090834
2005/0096740 | | | Chiang et al.
Langberg et al. | | 2003/0144697
2003/0160721 | | | Mathis et al.
Gilboa et al. | 2005/0107810 | | 5/2005 | | | 2003/0171760 | | | Gambale | 2005/0107812 | A1 | 5/2005 | Starksen et al. | | 2003/0171776 | Al | | Adams et al. | 2005/0107871 | | | Realyvasquez et al. | | 2003/0171806 | | | Mathis et al. | 2005/0119523
2005/0119734 | | 6/2005
6/2005 | Starksen et al.
Spence et al. | | 2003/0199974 | | | Lee et al. | 2005/0119735 | | 6/2005 | Spence et al. | | 2003/0204195
2003/0204205 | | | Keane et al.
Sauer et al. | 2005/0125002 | | 6/2005 | Baran et al. | | 2003/0208195 | | | Thompson et al. | 2005/0125011 | | 6/2005 | | | 2003/0212453 | A 1 | | Mathis et al. | 2005/0125031 | | 6/2005 | Pupenhagen et al. | | 2003/0220685 | | | Hlavka et al. | 2005/0131438
2005/0131533 | | 6/2005
6/2005 | Cohn
Alfieri et al. | | 2003/0229350
2003/0229395 | | 12/2003
12/2003 | | 2005/0137686 | | 6/2005 | Salahieh et al. | | 2003/0223333 | | | Morales et al. | 2005/0137688 | | 6/2005 | Salahieh et al. | | 2004/0003819 | | | St. Goar et al. | 2005/0137695 | | 6/2005 | | | 2004/0010287 | | | Bonutti | 2005/0137700
2005/0143811 | | 6/2005
6/2005 | Spence et al. | | 2004/0019359 | | | Worley et al. | 2005/0143811 | | 7/2005 | Realyvasquez
Mortier et al. | | 2004/0019377
2004/0019378 | | | Taylor et al.
Hlavka et al. | 2005/0149014 | | 7/2005 | Hauck et al. | | 2004/0019378 | | | Downing Downing | 2005/0159728 | | 7/2005 | Armour et al. | | 2004/0024451 | | 2/2004 | Johnson et al. | 2005/0159810 | | | Filsoufi | | 2004/0030382 | | | Sl. Goar et al. | 2005/0171601
2005/0177180 | | 8/2005
8/2005 | Cosgrove et al.
Kaganov et al. | | 2004/0039442 | | | Sl. Goar et al.
DeVries et al. | 2005/0177180 | | 8/2005 | Solem et al. | | 2004/0044364
2004/0049211 | | | Tremulis et al. | 2005/0184122 | | | Hlavka et al. | | 2004/0059413 | | | Argento | 2005/0187568 | | 8/2005 | | | 2004/0092962 | | 5/2004 | Thornton et al. | 2005/0192596 | | 9/2005 | Jugenheimer | | 2004/0093023 | | | Allen et al. | 2005/0197693
2005/0203549 | | 9/2005 | Pai et al.
Realyvasquez | | 2004/0097865
2004/0122456 | | | Anderson et al.
Saadat et al. | 2005/0203606 | | | VanCamp | | 2004/0122514 | | | Fogarty et al. | 2005/0216039 | A1 | 9/2005 | Lederman | | 2004/0127982 | | 7/2004 | Machold et al. | 2005/0216079 | | 9/2005 | MaCoviak | | 2004/0127983 | | | Mortier et al. | 2005/0222665
2005/0234481 | | 10/2005
10/2005 | Aranyi
Waller | | 2004/0133063
2004/0133274 | | | McCarthy et al.
Webler et al. | 2005/0251157 | | 11/2005 | Saadat et al. | | 2004/0133274 | | 7/2004 | | 2005/0251159 | | | Ewers et al. | | 2004/0138744 | | | Lashinski et al. | 2005/0251202 | | | Ewers et al. | | 2004/0138745 | | | Macoviak et al. | 2005/0251205
2005/0251206 | | 11/2005 | Ewers et al.
Maahs et al. | | 2004/0147958
2004/0148019 | | | Lam et al. | 2005/0251200 | | | Flores et al. | | 2004/0148019 | | | Vidlund et al.
Vidlund et al. | 2005/0251208 | | | Elmer et al. | | 2004/0148021 | | | Cartledge et al. | 2005/0251209 | A1 | 11/2005 | Saadat et al. | | 2004/0152947 | | | Schroeder et al. | 2005/0251210 | | | Westra et al. | | 2004/0162568 | | | Saadat et al. | 2005/0256532
2005/0267478 | | | Nayak et al.
Corradi et al. | | 2004/0167539
2004/0167620 | | | Kuehn et al.
Ortiz et al. | 2005/0267533 | | 12/2005 | | | 2004/0172046 | | | Hlavka et al. | 2005/0267571 | A1 | 12/2005 | Spence et al. | | 2004/0176788 | A1 | 9/2004 | Opolski | 2005/0273138 | | 12/2005 | To et al. | | 2004/0181287 | | | Gellman | 2005/0283192
2005/0288694 | | 12/2005
12/2005 | Torrie et al.
Solomon | | 2004/0186486 | | | Roue et al.
Hindrichs et al. | 2005/0288778 | | 12/2005 | | | 2004/0186566
2004/0193191 | | | Starksen et al. | 2006/0004410 | | | Nobis et al. | | 2004/0220473 | | 11/2004 | | 2006/0004442 | | | Spenser et al. | | 2004/0236419 | | 11/2004 | | 2006/0004443 | | | Liddicoat et al. | | 2004/0243153 | | | Liddicoat et al. | 2006/0009784
2006/0020326 | | | Behl et al.
Bolduc et al. | | 2004/0243227
2004/0260317 | | | Starksen et al.
Bloom et al. | 2006/0020327 | | | Lashinski et al. | | 2004/0260317 | | | Rahdert et al. | 2006/0020333 | | | Lashinski et al. | | 2004/0260394 | A1 | 12/2004 | Douk et al. | 2006/0020336 | | | Liddicoat | | 2004/0267358 | | 12/2004 | | 2006/0025787 | | | Morales et al. | | 2005/0004668 | | | Aklog et al. | 2006/0025858 | | | Alameddine | | 2005/0010287
2005/0010787 | | | Macoviak et al.
Tarbouriech | 2006/0030885
2006/0041319 | | 2/2006
2/2006 | Taylor et al. | | 2005/0016787 | | | Voughlohn | 2006/0069429 | | 3/2006 | Spence et al. | | 2005/0033446 | | | Deem et al. | 2006/0074486 | | 4/2006 | Liddicoat et al. | | 2005/0049634 | A1 | 3/2005 | Chopra | 2006/0085012 | A1 | 4/2006 | Dolan | | | | | | | | | | | (56) | Referen | ices Cited | 2008/0065011
2008/0065204 | | | Marchand et al.
Macoviak et al. | |------------------------------------|------------------|---
------------------------------|----|--------------------|--| | 211 | PATENT | DOCUMENTS | 2008/0003204 | | | Tuval et al. | | 0.5. | IZILIVI | DOCOMENTS | 2008/0086138 | | | Stone et al. | | 2006/0095009 A1 | 5/2006 | Lampropoulos et al. | 2008/0086203 | | | Roberts | | 2006/0106423 A1 | 5/2006 | Weisel et al. | 2008/0091169 | | | Heideman et al. | | 2006/0116757 A1 | | Lashinski et al. | 2008/0091257
2008/0097523 | | | Andreas et al.
Bolduc et al. | | 2006/0122633 A1 | | To et al. | 2008/0097323 | | | Gerber | | 2006/0129166 A1
2006/0142756 A1 | | Lavelle
Davies et al. | 2008/0140116 | | | Bonutti | | 2006/0142730 A1
2006/0149280 A1 | | Harvie et al. | 2008/0167713 | | 7/2008 | Bolling | | 2006/0149368 A1 | | Spence | 2008/0167714 | | | St. Goar et al. | | 2006/0161040 A1 | | McCarthy et al. | 2008/0195126 | | 8/2008 | | | 2006/0161265 A1 | | Levine et al. | 2008/0195200
2008/0208265 | | | Vidlund et al.
Frazier et al. | | 2006/0178682 A1
2006/0184240 A1 | | Boehlke
Jimenez et al. | 2008/0208203 | | | Lamphere et al. | | 2006/0184240 A1
2006/0184242 A1 | | Lichtenstein | 2008/0228165 | | | Spence et al. | | 2006/0195134 A1 | | Crittenden | 2008/0228198 | | | Traynor et al. | | 2006/0206203 A1 | 9/2006 | Yang et al. | 2008/0228265 | | | Spence et al. | | 2006/0212045 A1 | | Schilling et al. | 2008/0228266
2008/0228267 | | | McNamara et al.
Spence et al. | | 2006/0241622 A1 | | Zergiebel | 2008/0228267 | | | Stahler et al. | | 2006/0241656 A1
2006/0241748 A1 | | Starksen et al.
Lee et al. | 2008/0262609 | | | Gross et al. | | 2006/0247743 A1
2006/0247763 A1 | 11/2006 | | 2008/0275300 | A1 | 11/2008 | Rothe et al. | | 2006/0259135 A1 | | Navia et al. | 2008/0275469 | | | Fanton et al. | | 2006/0271175 A1 | | Woolfson et al. | 2008/0275503 | | | Spence et al. | | 2006/0282161 A1 | | Huynh et al. | 2008/0275551
2008/0281353 | | 11/2008 | Aranyi et al. | | 2006/0287661 A1
2006/0287716 A1 | | Bolduc et al.
Banbury et al. | 2008/0281333 | | | Berreklouw | | 2007/0001627 A1 | | Lin et al. | 2008/0288044 | | | Osborne | | 2007/0010857 A1 | | Sugimoto et al. | 2008/0288062 | | | Andrieu et al. | | 2007/0016287 A1 | | Cartledge et al. | 2008/0300537 | | | Bowman | | 2007/0016288 A1 | | Gurskis et al. | 2008/0300629
2009/0018655 | | 12/2008
1/2009 | | | 2007/0021781 A1
2007/0027533 A1 | 1/2007
2/2007 | Jervis et al. | 2009/0018033 | | 1/2009 | | | 2007/0027535 A1
2007/0027536 A1 | | Mihaljevic et al. | 2009/0043381 | | 2/2009 | | | 2007/0038221 A1 | 2/2007 | | 2009/0054969 | | 2/2009 | | | 2007/0038293 A1 | | St.Goar et al. | 2009/0062866 | | 3/2009 | Jackson | | 2007/0038296 A1 | | Navia et al. | 2009/0076586
2009/0076600 | | 3/2009 | Hauser et al.
Quinn | | 2007/0039425 A1
2007/0049942 A1 | 2/2007
3/2007 | Wang
Hindrichs et al. | 2009/0088837 | | 4/2009 | | | 2007/0049970 A1 | | Belef et al. | 2009/0093877 | | 4/2009 | Keidar et al. | | 2007/0051377 A1 | 3/2007 | Douk et al. | 2009/0099650 | | 4/2009 | | | 2007/0055206 A1 | | To et al. | 2009/0105816
2009/0125102 | | 4/2009
5/2009 | | | 2007/0055303 A1 | | Vidlund et al.
Hauser et al. | 2009/0123102 | | 7/2009 | | | 2007/0061010 A1
2007/0066863 A1 | | Rafiee et al. | 2009/0177266 | | | Powell et al. | | 2007/0078297 A1 | | Rafiee et al. | 2009/0177274 | | 7/2009 | Scorsin et al. | | 2007/0080188 A1 | | Spence et al. | 2009/0248148 | | 10/2009 | Shaolian et al. | | 2007/0083168 A1 | | Whiting et al. | 2009/0254103
2009/0264994 | | 10/2009
10/2009 | Deutsch
Saadat | | 2007/0100427 A1
2007/0106310 A1 | | Perouse
Goldin et al. | 2009/0287231 | | 11/2009 | Brooks et al. | | 2007/0106318 A1 | | Wardle et al. | 2009/0287304 | | 11/2009 | | | 2007/0112359 A1 | | Kimura et al. | 2009/0299409 | | | Coe et al. | | 2007/0112422 A1 | | Dehdashtian | 2009/0326648
2010/0001038 | | | Machold et al.
Levin et al. | | 2007/0112424 A1
2007/0118151 A1 | | Spence et al.
Davidson | 2010/0001038 | | | Juravic et al. | | 2007/0118151 A1
2007/0118154 A1 | | Crabtree | 2010/0023118 | | | Medlock et al. | | 2007/0118213 A1 | | Loulmet | 2010/0030014 | | | Ferrazzi | | 2007/0118215 A1 | | Moaddeb | 2010/0030328 | | | Seguin et al. | | 2007/0142907 A1 | | Moaddeb et al. | 2010/0042147
2010/0063542 | | 3/2010 | Janovsky et al.
van der Burg et al. | | 2007/0162111 A1
2007/0198082 A1 | | Fukamachi et al.
Kapadia et al. | 2010/0063550 | | | Felix et al. | | 2007/0219558 A1 | | Deutsch | 2010/0076499 | | 3/2010 | McNamara et al. | | 2007/0239208 A1 | 10/2007 | Crawford | 2010/0094248 | | | Nguyen et al. | | 2007/0255397 A1 | | Ryan et al. | 2010/0114180
2010/0121349 | | | Rock et al.
Meier et al. | | 2007/0255400 A1 | | Parravicini et al. | 2010/0121343 | | | Subramanian et al. | | 2007/0270755 A1
2007/0276437 A1 | | Von Oepen et al.
Call et al. | 2010/0121437 | | | Subramanian et al. | | 2007/0282375 A1 | | Hindrichs et al. | 2010/0130992 | | | Machold et al. | | 2007/0282429 A1 | 12/2007 | Hauser et al. | 2010/0152845 | | | Bloom et al. | | 2007/0295172 A1 | 12/2007 | | 2010/0161043 | | | Maisano et al. | | 2008/0004697 A1
2008/0027483 A1 | | Lichtenstein et al.
Cartledge et al. | 2010/0168845
2010/0174358 | | | Wright
Rabkin et al. | | 2008/0027483 A1
2008/0027555 A1 | | Hawkins | 2010/01/4338 | | | Longoria et al. | | 2008/0027353 AT
2008/0035160 A1 | | Woodson et al. | 2010/0217184 | | | Koblish et al. | | 2008/0039935 A1 | | Buch et al. | 2010/0217382 | | 8/2010 | Chau et al. | | 2008/0051703 A1 | | Thornton et al. | 2010/0234935 | | | Bashiri et al. | | 2008/0058595 A1 | 3/2008 | Snoke et al. | 2010/0249908 | Al | 9/2010 | Chau et al. | | (56) | Referen | ices Cited | 2014/013579 | | | Henderson | |------------------------------------|--------------------|-----------------------------------|------------------------------|---------------------|--------------------|---------------------------------| | II C | DATENIT | DOCUMENTS | 2014/0142619
2014/014269 | | 5/2014 | Serina et al.
Gross et al. | | 0.3 | . FAIENI | DOCUMENTS | 2014/014884 | | 5/2014 | Serina et al. | | 2010/0249915 A1 | 9/2010 | Zhang | 2014/015578 | | 6/2014 | | | 2010/0249920 A1 | | Bolling et al. | 2014/0163670 | | | Alon et al. | | 2010/0262232 A1 | | Annest | 2014/016369 | | 6/2014 | | | 2010/0262233 A1 | 10/2010 | | 2014/018810
2014/018814 | | 7/2014
7/2014 | | | 2010/0286628 A1 | 11/2010 | | 2014/018821: | | 7/2014 | | | 2010/0305475 A1
2010/0324598 A1 | | Hinchliffe et al.
Anderson | 2014/019497 | | 7/2014 | | | 2011/0004210 A1 | | Johnson et al. | 2014/020723 | | 7/2014 | Hacohen et al. | | 2011/0004298 A1 | | Lee et al. | 2014/024385 | | | Robinson | | 2011/0009956 A1 | | Cartledge et al. | 2014/0243894 | | | Groothuis et al. | | 2011/0011917 A1 | | Loulmet | 2014/0243963
2014/027575 | | 8/2014 | Sheps et al.
Goodwin et al. | | 2011/0026208 A1
2011/0029066 A1 | | Utsuro et al.
Gilad et al. | 2014/027664 | | | Hammer et al. | | 2011/0025000 A1
2011/0035000 A1 | | Nieminen et al. | 2014/029696 | | | Cartledge et al. | | 2011/0066231 A1 | | Cartledge et al. | 2014/030364 | | | Nguyen et al. | | 2011/0067770 A1 | | Pederson et al. | 2014/0303720 | | | Sugimoto et al. | | 2011/0071626 A1 | | Wright et al. | 2014/030966
2014/030973 | | 10/2014 | Sheps et al.
Alon et al. | | 2011/0082538 A1 | | Dahlgren et al. | 2014/034366 | | | Zipory et al. | | 2011/0087146 A1
2011/0093002 A1 | | Ryan et al.
Rucker et al. | 2014/035066 | | 11/2014 | | | 2011/0118832 A1 | | Punjabi | 2014/037900 | 5 A1 | 12/2014 | Sutherland et al. | | 2011/0137410 A1 | | Hacohen | 2015/001894 | | 1/2015 | Quill et al. | | 2011/0144703 A1 | | Krause et al. | 2015/005169 | | 2/2015
3/2015 | | | 2011/0202130 A1 | | Cartledge et al. | 2015/0081014
2015/0112433 | | | Reich et al. | | 2011/0208283 A1
2011/0230941 A1 | 8/2011 | Kust
Markus | 2015/012709 | | | Neumann et al. | | 2011/0230941 A1
2011/0230961 A1 | | Langer et al. | 2015/0182336 | | | Zipory et al. | | 2011/0238088 A1 | | Bolduc et al. | 2015/027258 | | | Herman et al. | | 2011/0257433 A1 | | Walker | 2015/027273 | | 10/2015 | | | 2011/0257633 A1 | | Cartledge et al. | 2015/028293 | | 10/2015 | | | 2011/0264208 A1 | | Duffy et al. | 2015/0351910
2016/000813 | | 1/2015 | Gilmore et al.
Cabiri et al. | | 2011/0276062 A1
2011/0288435 A1 | | Bolduc
Christy et al. | 2016/005855 | | | Reich et al. | | 2011/0288433 A1
2011/0301498 A1 | | Maenhout et al. | 2016/011376 | | | Miller et al. | | 2012/0078355 A1 | | Zipory et al. | 2016/012064 | | 5/2016 | | | 2012/0078359 A1 | 3/2012 | Li et al. | 2016/0158003 | | | Miller et al. | | 2012/0089022 A1 | | House et al. | 2016/024276
2016/026275 | | | Gilmore et al.
Zipory et al. | | 2012/0095552 A1
2012/0109155 A1 | | Spence et al.
Robinson et al. | 2016/030291 | | 10/2016 | | | 2012/0109133 A1
2012/0150290 A1 | | Gabbay | 2016/031730 | | | Madjarov et al. | | 2012/0158021 A1 | | Morrill | 2016/036105 | | | Bolduc et al. | | 2012/0179086 A1 | | Shank et al. | 2016/0361169
2016/0361169 | | 12/2016
12/2016 | Gross et al.
Gross et al. | | 2012/0191182 A1
2012/0226349 A1 | | Hauser et al. | 2017/0000609 | | 1/2017 | Gross et al. | | 2012/0220349 A1
2012/0239142 A1 | | Tuval et al.
Liu et al. | 2017/0224489 | | 8/2017 | Starksen et al. | | 2012/0245604 A1 | | Tegzes | 2017/024599 | 3 A1 | 8/2017 | Gross et al. | | 2012/0271198 A1 | | Whittaker et al. | 2018/004987 | | 2/2018 | Iflah et al. | | 2012/0296349 A1 | | Smith et al. | 2018/031808 | | 11/2018 | Quill et al. | | 2012/0296417 A1
2012/0310330 A1 | | Hill et al.
Buchbinder et al. | 2019/003841 | I AI | 2/2019 | Alon | | 2012/0310330 A1
2012/0323313 A1 | | Seguin | E | APEIG | N DATE | NT DOCUMENTS | | 2013/0030522 A1 | | Rowe et al. | 1, | JILLIO | NIAID. | NI DOCOMENIS | | 2013/0046373 A1 | 2/2013 |
 EP | 2181 | 1670 | 5/2010 | | 2013/0079873 A1
2013/0085529 A1 | 3/2013 | Migliazza et al.
Housman | EP | | 1975 A1 | 9/2019 | | 2013/0090724 A1 | | Subramanian et al. | WO | | 5093 A1 | 4/1992 | | 2013/0096673 A1 | | Hill et al. | WO W
WO | O 9604/
984 | 1852
5149 A1 | 2/1996
10/1998 | | 2013/0116776 A1 | | Gross et al. | | /O 9900 | | 1/1999 | | 2013/0123910 A1 | | Cartledge et al. | | O 0003 | | 1/2000 | | 2013/0131791 A1
2013/0166017 A1 | | Hlavka et al.
Cartledge et al. | | O 0044 | | 8/2000 | | 2013/0190863 A1 | | Call et al. | | /O 0060 | | 10/2000 | | 2013/0204361 A1 | | Adams et al. | | /O 0067
/O 0200 | | 11/2000
1/2002 | | 2013/0226289 A1 | | Shaolian et al. | | 0205 | | 7/2002 | | 2013/0226290 A1 | | Yellin et al. | WO W | O 02096 | 5275 | 12/2002 | | 2013/0268069 A1
2013/0289718 A1 | | Zakai et al.
Tsukashima et al. | | O 03001 | | 1/2003 | | 2013/0289718 A1
2013/0297013 A1 | | Klima et al. | | O 03007 | | 1/2003 | | 2013/0304093 A1 | | Serina et al. | WO
WO | | 5250 A3
7467 A1 | 2/2003
6/2003 | | 2014/0081394 A1 | | Keranen et al. | | O3053 | | 7/2003 | | 2014/0088368 A1 | 3/2014 | | | 03/077 | | 9/2003 | | 2014/0094826 A1 | | Sutherland et al. | | 004/037 | | 5/2004 | | 2014/0094903 A1 | | Miller et al. | | 2004045 | | 6/2004 | | 2014/0094906 A1
2014/0114390 A1 | 4/2014
4/2014 | Spence et al. Tobis et al. | | :004/112
2005011 | | 12/2004
2/2005 | | 2014/0114330 Al | 4 /2014 | TODIS CL AI. | WO. | 2003011 | 100 | 2/2003 | #### (56)References Cited FOREIGN PATENT DOCUMENTS WO WO 2005013832 2/2005 WO 2005025644 3/2005 WO WO WO 200558239 6/2005 WO WO 2006/039296 4/2006 WO WO 06064490 6/2006 wo WO 2006105008 10/2006 WO WO 07005394 1/2007 WO WO 200891391 7/2008 WO 2010000454 A1 1/2010 2012176195 A3 2014064964 A1 WO WO ### OTHER PUBLICATIONS 3/2013 5/2014 F. Maisano et al., The Double-Orifice Technique as a Standardized Approach to Treat Mitral Regurgitation Due to Severe Myxomatous Disease: Surgical Technique, European Journal of Cardio-thoracis Surgery, 1998. Douglas P. Zipes, MD et al., Ablation of Free Wall Accessory Pathways, Catheter Ablation of Arrhythmias, Chapter 8, 7 pgs., 1994. David L.S. Morales et al., Development of an Off Bypass Mitral Valve Repair, Department of Surgery, Columbia University, College of Physicians and Surgeons, New York, NY. Apr. 13, 1999. Heart Surgery Forum, Aug. 8, 2000. p. 1. Tables 1-2. Web. http://www.hsforum.com/voI2/issue2/1999-4963_tables.html>. Heart Surgery Forum, Aug. 8, 2000. pp. 1-4. Figures 1-8. Web. http://www.hsforum.comlvoI2/issue2/1999-4963figures.html>. "Heart Valves: The Duran Flexible Annuloplasty Band—For Surgeons "Partial" to Flexiblity." Medtronic. Feb. 23, 2001. Web. http://medtronic.com/cardiac/heartvalves/duran_band/>. Zsolt L. Nagy et al., Mitral Annuloplasty With a Suture Technique, European Journal of Cardio-thoracic Surgery 18. Aug. 15, 2000, 1 pg. Agarwal et al. International Cardiology Perspective Functional Tricuspid Regurgitation, Circ Cardiovasc Interv 2009;2;2;565-573 (2009). Ahmadi, A., G. Spillner, and Th Johannesson, "Hemodynamic changes following experimental production and correction of acute mitral regurgitation with an adjustable ring prosthesis." The Thoracic and cardiovascular surgeon36.06 (1988): 313-319. Ahmadi, All et al. "Percutaneously adjustable pulmonary artery band." The Annals of thoracic surgery 60 (1995): S520-S522. Alfieri et al. "Novel Suture Device for Beating-Heart Mitral Leaflet Afficial et al. "Novel Suture Device for Beating-Heart Mitral Leaflet Approximation", Ann Thorac Surg. 2002, 74:1488-1493. Alfieri et al., "An effective technique to correct anterior mitral leaflet prolapse," J Card 14(6):468-470 (1999). Alfieri et al., "The double orifice technique in mitral valve repair: a simple solution for complex problems," Journal of Thoracic Cardiovascular Surgery 122:674-681 (2001). Alfieri, "The edge-to-edge repair of the mitral valve," [Abstract] 6th Annual NewEra Cardiac Care: Innovation & Technology, Heart Surgery Forum pp. 103. (2000). Amplatzer Cardiac Plug brochure (English pages), AGA Medical Corporation (Plymouth, MN) (copyright 2008-2010, downloaded Jan. 11, 2011). AMPLATZER® Cribriform Occluder. A patient guide to Percutaneous, Transcatheter, Atrial Septal Defect Closuer, AGA Medical Corporation, Apr. 2008. AMPLATZER® Septal Occluder. A patient guide to the Non-Surgical Closuer of the Atrial Septal Defect Using the AMPLATZER Septal Occluder System, AGA Medical Corporation, Apr. 2008. Assad, Renato S. "Adjustable Pulmonary Artery Banding." (2014). Brennan, Jennifer, 510(k) Summary of safety and effectiveness, Jan. Daebritz, S. et al. "Experience with an adjustable pulmonary artery banding device in two cases: initial success-midterm failure." The Thoracic and cardiovascular surgeon 47.01 (1999): 51-52. Dang NC et al. "Simplified Placement of Multiple Artificial Mitral Valve Chords," The Heart Surgery Forum #2005-1005, 8 (3) (2005). Dictionary.com definition of "lock", Jul. 29, 2013. Dieter RS, "Percutaneous valve repair: Update on mitral regurgitation and endovascular approaches to the mitral valve," Applications in Imaging, Cardiac interventions, Supported by an educational grant from Amersham Health pp. 11-14 (2003). Elliott, Daniel S., Gerald W. Timm, and David M. Barrett. "An implantable mechanical urinary sphincter: a new nonhydraulic design concept." Urology52.6 (1998): 1151-1154. Langer et al. Ring plus String: Papillary muscle repositioning as an adjunctive repair technique for ischemic mitral regurgitation, The Journal of Thoracic Cardiovascular surgery vol. 133 No. 1, Jan. 2007. Langer et al. Ring+String, Successful Repair technique for ischemic mitral regurgitation with severe leaflet Tethering, The Department of Thoracic Cardiovascular surgery, Hamburg, Germany, Nov. 2008. Maisano, "The double-orifice technique as a standardized approach to treat mitral," European Journal of Cardio-thoracic Surgery 17 (2000) 201-205. O'Reilly S et al., "Heart valve surgery pushes the envelope," Medtech Insight 8(3): 73, 99-108 (2006). Odell JA et al., "Early Results o4yf a Simplified Method of Mitral Valve Annuloplasty," Circulation 92:150-154 (1995). Park, Sang C. et al. "A percutaneously adjustable device for banding of the pulmonary trunk." International journal of cardiology 9.4 (1985): 477-484. Swain CP et al., "An endoscopically deliverable tissue-transfixing device for securing biosensors in the gastrointestinal tract," Gastrointestinal Endoscopy 40(6): 730-734 (1994). Swenson, O. An experimental implantable urinary sphincter. Invest Urol. Sep. 1976;14(2):100-3. Swenson, O. and Malinin, T.I., 1978. An improved mechanical device for control of urinary incontinence. Investigative urology, 15(5), pp. 389-391. Swenson, Orvar. "Internal device for control of urinary incontinence." Journal of pediatric surgery 7.5 (1972): 542-545. Tajik, Abdul, "Two dimensional real-time ultrasonic imaging of the heart and great vessels", Mayo Clin Proc. vol. 53:271-303, 1978. * cited by examiner 14a -12 FIG. 1 12. FIG. 4A FIG. 10B ### TISSUE ANCHOR AND ANCHORING SYSTEM ### CROSS-REFERENCE TO RELATED APPLICATIONS This application is a continuation of U.S. patent application Ser. No. 14/581,264, filed Dec. 23, 2014, which is a continuation of U.S. patent application Ser. No. 12/273,670, filed Nov. 19, 2008, which is a divisional of U.S. patent application Ser. No. 11/174,951, filed Jul. 5, 2005, now U.S. Pat. No. 8,951,285, issued Feb. 10, 2015, the contents of each of which are incorporated by reference in their entireties. #### TECHNICAL FIELD The present invention generally relates to tissue anchors and, more particularly, anchors and methods of using such anchors to secure an element or otherwise provide an anchor point to biological tissue and/or to secure at least two tissue portions together. ### **BACKGROUND** Many different surgical procedures require that an anchor be used to either establish a strong point of connection for other securing elements or devices relative to a tissue location in a patient, and/or to secure two or more tissue layers (i.e., portions together. In this regard, the term ³⁰ "anchor", as used herein, is not to be limited to any particular type of tissue fastening or securement application but, rather, encompasses any hard and/or soft tissue-to-tissue securement, tissue-to-device securement, or any other tissue securement application. One particular area that has received attention in recent years is that of catheter-based surgical procedures. Various tissue anchors have been developed for purposes of deployment and securement with catheter-based technology. However, there are still limitations in current technology. For 40 example, insertion size versus deployment size must be strictly controlled due to the need for catheter diameters to be maintained relatively small. Many catheter-based tissue anchor systems have very specialized uses and are not versatile for use in many different tissue fastening or secure- 45 ment operations. There is generally a need for a simpler, more versatile tissue anchor which may be deployed and securely fastened to tissue in a catheter-based operation or a non-catheterbased operation. ### **SUMMARY** In one aspect, the invention provides a tissue anchor comprising a generally flexible anchor member capable of 55 being inserted through tissue and moving between an elongate configuration and a shortened configuration suitable for anchoring against at least one side of the tissue. The anchor member includes a proximal end portion, a distal end portion, and a compressible intermediate portion between 60 the proximal end portion and the distal end portion. A tensioning member is operatively connected to the anchor member such that the anchor member can slide relative to the tensioning member. The tensioning member may be pulled to cause the anchor member to move relative to the 65 tensioning
member from the elongate configuration to the shortened configuration. In the shortened configuration, the 2 compressible intermediate portion of the anchor member can compress or shorten and thereby adjust to the thickness of the tissue between the proximal and distal end portions. In another aspect of the invention, a tissue anchor is provided comprising a flat, generally flexible anchor member capable of movement between an elongate configuration suitable for deployment and a shortened configuration suitable for anchoring against tissue. A tensioning member is operatively connected to the anchor member such that the anchor member can slide relative to the tensioning member. The tensioning member is capable of being pulled to cause the anchor member to move relative to the tensioning member from the elongate configuration to the shortened configuration. In a further aspect of the invention, a tissue anchor is provided comprising a flat anchor member formed from a strip of fabric material and capable of movement between an elongate configuration suitable for deployment and a shortened configuration suitable for anchoring against tissue. A tensioning member is operatively connected to the anchor member such that the anchor member can slide relative to the tensioning member. The tensioning member is capable of being pulled to cause the anchor member to move relative to the tensioning member from the elongate configuration to the shortened configuration. A lock member is provided for securing the anchor member in the shortened configuration. In a further aspect of the invention, a tissue anchor is provided comprising a flat, generally flexible anchor member capable of being inserted through tissue and moving between an elongate configuration suitable for deployment through a catheter and a shortened configuration suitable for anchoring against the tissue. A tensioning member is operatively connected to the anchor member such that the anchor member may slide relative to the tensioning member. The tensioning member is capable of being pulled to cause the anchor member to move relative to the tensioning member from the elongate configuration to the shortened configuration against the tissue. In another aspect of the invention, a tissue anchor is provided comprising a flat elongate strip formed from a generally flexible material and having proximal and distal end portions. A tensioning member having first and second ends is operatively connected to the elongate strip such that pulling on the first end of the tensioning member causes the proximal and distal end portions of the elongate strip to move toward each other to a shortened configuration suitable for anchoring against the tissue. In certain aspects, the anchor member is advantageously formed as a flat, generally flexible strip of material, while in other aspects it need not be a flat strip but may have other shapes, such as tubular, that may or may not be capable of assuming a flat shape. Various optional features may be incorporated into any or all of the various embodiments of the tissue anchor. For example, the tissue anchor may be formed from a material selected from at least one of: natural fibers, synthetic fibers, polymers, and metals. Such materials may be absorbable or nonabsorbable, and may be radiopaque or at least partially radiopaque. The tensioning member may further comprise a suture, or any other suitable flexible, semi-rigid or rigid tensioning member. The tensioning member may include a stop member engaged with the anchor member, such as a knot in the tensioning member, or a separate stop member (e.g., a crimp) engageable with the anchor member. The tensioning member may, for example, extend through the anchor member at multiple locations between the proximal end portion and the distal end portion. Such coupling of the tensioning member and the anchor member may be configured in many different manners depending, for example, on the desired configuration of the anchor member upon pulling the tensioning member and moving the anchor member into the shortened configuration. In one embodiment, at least one fold is formed upon pulling the tensioning member. Multiple folds may be formed in a generally zig-zag or accordion fashion. A lock member may be provided and engageable with the tensioning member to retain the anchor member in the shortened configuration. The tissue anchor may include at least one radiopaque 10 marker on one or both of the anchor member and the tensioning member. For example, a first radiopaque marker may be located near the proximal end portion when the anchor member is in the shortened configuration and a second radiopaque marker may be located near the distal end 15 portion when the anchor member is in the shortened configuration. The distal end portion of the anchor member may include a relatively more rigid tip as compared to the anchor member and having a reduced width as compared to an adjacent portion of the anchor member. The anchor member 20 itself may be designed in any of numerous manners, including designs that have a uniform width along the length thereof, and designs that have a varying width along the length. Other features may be incorporated such as edge portions that are slightly more rigid than a central area of the 25 anchor member. Entire sections of the anchor member may be relatively rigid as compared to fold line portions thereof while still resulting in a generally flexible anchor member. As necessary, hinge portions, such as living hinges, may be designed into the anchor member to allow for folding or 30 other shortening action of the anchor member. While a tensioning member is specifically disclosed herein for activation purposes (that is, activating the anchor member from the elongate configuration to the shortened configuration), the invention in various combinations may utilize other 35 types of activation, such as compressive activation. Each of the embodiments of the tissue anchor may be part of a catheter-based anchoring system having a delivery catheter and a suitable deploying device associated with the delivery catheter and operable to extend the anchor member 40 from the delivery catheter. The deploying device may further comprise a deploying catheter at least partially containing the anchor member and at least partially contained within the delivery catheter. The invention further provides for various methods of 45 anchoring tissue as generally described herein. For example, in one aspect a method of anchoring tissue is provided comprising inserting a generally flexible elongate anchor member through the tissue, and pulling a first end of a tensioning member coupled for sliding movement relative to 50 the first anchor member to draw the proximal and distal end portions toward each other and to compress the intermediate portion into the shortened configuration with at least one of the proximal and distal end portions engaged against the tissue In another aspect of the invention, a method of tissue anchoring is provided comprising inserting the generally flexible flat elongate strip having proximal and distal end portions through the tissue, and pulling a first end of a tensioning member operatively connected to the strip to 60 draw the proximal and distal end portions of the strip toward each other into the shortened configuration engaged against the tissue. In another aspect, a method of tissue anchoring is provided comprising inserting the generally flexible flat elongate strip having proximal and distal end portions through the tissue, and pulling a first end of a tensioning member 4 operatively connected to the strip to configure at least a portion of the strip into a shortened configuration engaged against the tissue. In each of the embodiments engagement of the anchor member against the tissue may be engagement against opposite sides of at least one tissue layer, or engagement against only one side of at least one tissue layer. Additional features and advantages of the invention will become readily apparent to those of ordinary skill in the art upon review of the following detailed description of the illustrative embodiments taken in conjunction with the accompanying illustrative figures. #### BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a tissue anchor constructed in accordance with a first embodiment of the invention. FIG. 2A is a side view of the tissue anchor shown in FIG. 1, with the tissue anchor deployed through a layer of tissue. FIG. 2B is a side view similar to FIG. 2A, but illustrating the distal portion of the tissue anchor being moved toward the layer of tissue. FIG. 2C is a side view similar to FIG. 2B, but showing the distal portion fully compressed and engaged against the layer of tissue. FIG. 2D is a side view similar to FIG. 2C but illustrating the proximal portion of the tissue anchor being moved toward the layer of tissue. FIG. 2E illustrates the proximal and distal portions of the tissue anchor fully compressed against opposite sides of the layer of tissue. FIG. 2F is an enlarged cross sectional view illustrating the fully deployed and fastened anchor with a layer of tissue between proximal and distal anchor portions. FIG. 3 is a side cross sectional view similar to FIG. 2F, but illustrating the fastening of two layers of tissue between the proximal and distal anchor portions. FIGS. 4A-4F are perspective views illustrating successive steps in an annuloplasty procedure on the mitral valve of a patient utilizing tissue anchors of the first embodiment. FIGS. 5A-5E are perspective views illustrating a mitral valve annuloplasty procedure utilizing tissue anchors constructed according to a second embodiment of the invention. FIG. **6** is a side elevational view illustrating the tissue anchor constructed in accordance with the second embodiment. FIG. 7 is a front view of the elongate strip portion of the anchor FIG. 7A is a front elevational view
similar to FIG. 7, but illustrating one embodiment of radiopaque markers used on the elongate strip. FIG. 7B is a front elevational view of an alternative anchor strip having a varying width along its length. FIG. 7C is a side elevational view of another alternative anchor strip utilizing more rigid fold sections separated by living hinges. FIGS. **8**A-**8**D are respective side views illustrating a sequence of steps used for securing the tissue anchor of the second embodiment to a layer of tissue. FIG. 8E is a view similar to FIG. 8D, but illustrating an alternative tip and tensioning member arrangement. FIGS. 9A-9C are respective side elevational views illustrating an annuloplasty procedure in which two tissue anchors of the second embodiment are daisy-chained together with a single tensioning member to plicate the tissue between the anchors in a more integrated procedure. FIGS. 10A and 10B are respective side elevational views illustrating the tissue anchor of the second embodiment used to provide an anchor or securement location on only one side of a tissue layer. ### DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS Referring first to FIG. 1, a tissue anchor 10 constructed in accordance with a first embodiment of the invention gener- 10 ally includes a tensioning member 12, such as a suture, extending through spaced apart points along a flat elongate strip 14 of flexible material, such as a surgical grade fabric. It will be appreciated that the tensioning member 12 may take other forms other than suture material, such as cable or 15 any other small diameter member having a high enough tensile strength for the intended anchoring use. The elongate strip 14 may also take various forms such as woven or nonwoven fabrics, polymers, metals or other suitable materials or combinations of materials. One or more separate 20 pledgets or other securement members (not shown) may be used in conjunction with the elongate strip 14 for added securement and/or concealing the elongate strip 14 and, for example, thereby inhibiting blood clotting within or adjacent to the folds that will be formed in the strip 14. A woven or nonwoven material may contain additional materials, such as threads, beads or other elements that cause at least portions of the strip 14 to be radiopaque. Currently, a surgical grade fabric constructed from polyester, such as Dacron®, is contemplated for use in constructing the strip 30 14. One of many possible alternative materials for use in constructing strip 14 is polytetrafluoroethylene (PTFE). Tissue anchor 10 may be partly or wholly formed from materials that are absorbed into the patient's tissue over time, depending on the intended use. The edges and/or other 35 portions of the strip 14 may be suitably modified to prevent fraying, such as by being coated with a material that locks the fibers in place, or otherwise modified in a manner that locks the fibers at least at the edges of the strip 14 in place. The suture 12 may extend from a proximal end portion 40 **14***a* of the fabric strip **14** to a distal end portion **14***b* and then loop back through spaced apart points of the fabric strip 14 to the proximal end portion 14a where a knot 16 or other stop member is located for reasons to be described below. As will become apparent, the suture 12 extends through spaced 45 apart locations along the elongate strip 14 such that tensioning of the suture 12 or other tensioning member will cause the elongate strip 14 to form folded portions 14c when the tensioning member 12 is placed under tension or pulled. Thus, the elongate strip 14 is activated in this manner 50 between essentially an elongate deployment orientation or configuration, such as shown in FIG. 1, and a shortened configuration, such as a folded or otherwise shortened configuration having an expanded width in at least one dimension as compared to the elongate deployment configu- 55 ration. It will be appreciated that the deployment orientation may take on various forms due to the flexible nature of the strip 14, especially when using a highly flexible fabric or other material. For example, a fabric material or other similarly flexible materials may be folded or otherwise 60 deformed for carrying purposes within a catheter and/or during deployment to a tissue site and then suitably activated at the tissue site. More specifically referring to FIGS. 2A-2E, the elongate strip 14 and attached suture 12 are initially inserted through 65 at least one tissue layer 20 as generally shown in FIG. 2A. One end or portion 12a of the suture 12 is then pulled and 6 thereby placed under tension. It will be appreciated that, for catheter-based procedures, suture portion 12a may extend to a location outside the patient's body for pulling or tensioning, or it may be grasped by a suitable mechanism within the catheter and pulled or tensioned. Pulling suture portion 12a may initially draw the distal portion 14b of the elongate strip 14 toward the layer of tissue 20 as shown in FIG. 2B. Once the distal portion 14b is compressed against the layer of tissue 20, the proximal portion 14a begins to be drawn and compressed against a proximal side of the tissue 20 as shown in FIGS. 2C-2E. This occurs because end 12a of the suture 12 is being pulled downwardly (as viewed for purposes of discussion in FIGS. 2C-2E) and, since the suture 12 is looped in a reverse direction through distal end portion 14b of the elongate strip 14, the knot 16 at the end of the suture 12 moves upwardly and brings the proximal portion 14a of the elongate strip 14 with it. In this manner, the proximal portion 14a of the elongate strip 14 is being folded and drawn along the suture 12 toward the layer of tissue 20 and then firmly compressed against the proximal side of the layer of tissue 20 as shown in FIG. 2E. As further shown in FIG. 2F, a suitable locker element, such as a crimp member 22, a knot or other element may be used to maintain the suture 12 and elongate strip 14 in the positions shown in 25 FIG. **2**F securely anchoring the proximal and distal portions 14a, 14b of the elongate strip 14 folded against opposite sides of the tissue 20. As further shown in FIG. 3, the same general procedure may be used to secure two distinct tissue layers 30, 32 together by initialing extending the elongate strip 14 and tensioning member 12 through at least two layers of tissue 30, 32. In this manner, for example, two layers of tissue 30, 32 may be securely fastened together. This may, for example, involve two entirely different layers and even types of tissue or the same layer of tissue which has been folded over to effectively form two layers (i.e., portions) of tissue. FIGS. 4A-4E schematically illustrate an annuloplasty procedure performed on a mitral valve 40 of a heart 42 utilizing tissue anchors 10 as described above in regard to the first embodiment. Performance of the annuloplasty procedure may have many variations, but is generally illustrated by the placement of at least two tissue anchors 10 and securement of the two anchors 10 together, such as with one or more tensioning members 12 therebetween. For an additional illustrative description of catheter-based annuloplasty procedures that may utilize any of the tissue anchors within the scope of the present invention, reference may be made to U.S. patent application Ser. No. 10/948,922, filed on Sep. 24, 2004, assigned to the assignee of the present invention, and the disclosure of which is hereby entirely incorporated by reference herein. As illustrated in FIG. 4A, a first tissue anchor 10 is deployed through a catheter device 50 which may, for example, have an inner tubular member 52 or deploying catheter received within an outer tubular member 54 or delivery catheter. The tissue anchor 10 and tensioning member 12 are carried within the inner tubular member 52 and are deployed from a distal end 52a thereof. To ensure that proper force is applied to penetrate the tissue, tissue anchor 10 may be deployed or extended after the inner tubular member 52 has been inserted through tissue at the annulus **40***a* of the mitral valve **40**. This is best illustrated in FIG. **4**B. The inner tubular member 52 is withdrawn from the annulus tissue 40a either before, during or after activation of the distal end portion 14b of the elongate strip 14. As previously described, activating (e.g., compression, folding or otherwise shortening) the elongate strip 14 by pulling the suture 12 causes the distal end portion 14b and then proximal end portion 14a to be securely compressed and folded against opposite sides of the annulus tissue 40a. This procedure is repeated at least one additional time to securely fasten an additional tissue anchor 10 at a location spaced from the 5 initial location. For example, the initial location may be at location P2 of the mitral valve annulus 40 while the second location may be spaced on either side of location P2. Catheter device 50 may be inserted into the location of annulus 40a in various manners, but is shown being inserted 10 downwardly through the aortic valve 53 into the left ventricle 55, and curving upward toward the mitral valve annulus 40a. In the illustrative example shown in FIG. 4E, three tissue anchors 10 have been deployed and securely fastened to the annulus tissue 40a. As shown in FIG. 4F a suture locker 56 may then be deployed and used to maintain relative position and, therefore, tension between each of three respective tensioning members or sutures 12 associated with the three tissue anchors 10 after the tissue anchors 10 have been 20 pulled closer to each other thereby plicating the tissue 40a between the anchors 10. This essentially shortens the valve annulus 40a and pulls the posterior leaflet 60 toward the anterior leaflet 62 to prevent leakage through the valve 40, i.e., to achieve better coaptation of the posterior and anterior 25 leaflets 60, 62 during systole. FIGS. 5A-5E illustrate a similar
annuloplasty procedure on a mitral valve 40 utilizing a second embodiment of a tissue anchor 70 and a modified method of deployment and activation. In general, the differences between anchor 70 and 30 anchor 10 will be described below with the understanding that all other attributes, options and features associated with anchor 70 may be as described above in connection with anchor 10. As shown in FIG. 5A, in this embodiment a tensioning member 72 is again used to activate a flexible, 35 elongate flat strip 74 having proximal and distal end portions 74a, 74b. Strip 74 includes a tip 76 that is formed or otherwise secured on the distal end portion 74b. The tensioning member 72 and the tip 76 are arranged such that the tensioning member 72 slides relative to the tip 76. More 40 particularly, the tensioning member 72 can be threaded through the tip 76. Tip 76 is made to be relatively rigid as compared to other flexible portions of strip 74 and of smaller diameter than the width of strip 74. Therefore, tip 76 helps to penetrate the annulus tissue 40a as the inner tubular 45 member 52 and the elongate strip 74 are extended through the tissue 40a. A wire 73 may be used to push the tip 76 out of the tubular member 52 at the desired time. The tip 76 may protrude slightly from the inner tubular member 52 as the tissue 40a is penetrated to assist with piercing the tissue 40a. 50 The tip 76 may also assist with forcing distal portion or half 74b of strip 74 into a folded or otherwise shortened configuration. To help prevent the distal portion 74b of the elongate strip from pulling back through the tissue 40a as the inner tubular member 52 is withdrawn from the annulus 55 tissue 40a, the free end of the tensioning member 72 is pulled while the inner tubular member 52 is still penetrated through the tissue 40a and into the left atrium 80 from the left ventricle 55. This forms the distal portion 74b into a folded or otherwise shortened configuration as shown in 60 FIG. 5B. The inner tubular member 52 may then be withdrawn without also withdrawing the elongate flexible strip 74 with it, as shown in FIG. 5C. The proximal portion 74a of the elongate strip 74 is then deployed by pulling the inner tubular member 52 further in a proximal direction, and 65 thereby exposing the full length of strip 74. The tensioning member 72 is pulled or tensioned so as to draw and 8 compress the proximal portion 74a of the elongate strip 74 into a folded, shortened condition against an underside of the annulus tissue 40a as shown in FIG. 5D. As with the previously described annuloplasty procedure using the first embodiment of the tissue anchor 10, this is repeated as many times as necessary to create the necessary number of tissue plications. FIG. 5E illustrates this by way of an exemplary view of three successive tissue anchor securement locations with tissue anchors 70 that may be drawn together and locked in place to achieve and retain the plications as described in connection with FIG. 4F. Such plications reduce or close the gap between the posterior and anterior leaflets 60, 62. during systole FIG. 6 is a side elevational view of the tissue anchor 70 as shown and described with respect to the annuloplasty procedure of FIGS. 5A-5E. This embodiment differs from the first embodiment in a number of different manners, in addition to the use of a distal tip 76 for tissue penetration purposes. For example, the elongate strip 74 is somewhat shorter than the elongate strip 14 utilized in the first embodiment. For example, the strip 74 may be about 40 mm long by about 3 mm wide. Of course, any other desired dimensions and shapes may be used depending on application needs. This may be desirable to achieve a lower profile deployed and fastened configuration with fewer folds that may lead to more versatile applications, lower incidents of blood clotting, easier use, etc. In addition, respective proximal and distal radiopaque bands 90, 92 are secured to the suture 72 at the proximal end portion of the strip 74 and to either the interior or exterior of the distal tip 76. Under a fluoroscope, these bands or other markers 90, 92 will indicate to the surgeon that the anchor 70 has been deployed, activated and fully compressed and/or fastened as necessary during the procedure. The tip 76 itself may alternatively be formed from a radiopaque material. In this second embodiment, the knot 94 formed in the suture 72 or other tensioning member is a slip knot through which another portion of the suture 72 slides during activation of the tissue anchor 70. It will be appreciated that this slip knot 94 may be replaced by another element which serves essentially the same purpose but takes the form, for example, of a small tubular element or other feature similar in function to a slip knot. As further shown in FIGS. 6 and 7, the tensioning member or suture 72 can advantageously extend through respective fold portions 74c of the elongate strip 74 in essentially an hourglass configuration. Specifically, adjacent portions of the suture 72 located near the proximal and distal end portions 74a, 74b of the strip 74 are spaced farther apart than the adjacent portions of the suture 72 in the middle of the strip 74. As further shown in FIG. 7A, radiopaque markers, such as distinct areas of dots 95, may be used for enabling the surgeon to visualize the folds of the elongate strip 74 during deployment and securement of the elongate strip 74. These dots or other radiopaque markers may be printed on the strip 74. For example, dots 95 or other markers may be formed with a platinum powder base ink or other suitable material that is radiopaque and biologically compatible. This radiopaque material may also add stiffness to the fold sections 74c thereby helping to maintain the fold sections 74c flat and increasing retention force on the tissue. Meanwhile, the fold lines 74d between fold sections 74c can remain highly flexible to create tight radius fold lines. As further shown in FIG. 7, each of the holes 96 that the tensioning member or suture 72 is received through may be marked by circles 98 surrounding each hole 96 or other markers for visualizing purposes during assembly of the tensioning member or suture 72 with the elongate strip 74. Optionally, holes 96 may be eliminated and the suture 72 may be threaded with a needle through the strip 74. One could also, for example, choose different sets of holes 96 along strip 74 for receiving the tensioning member or suture 72 thereby changing the width of the folds and/or number of 5 folds and/or shape of the folds depending on the application needs or desires of the surgeon. The tensioning member or suture 72 may be threaded or otherwise attached along the strip 74 in any number of manners including, for example, x-patterns or other crossing patterns, zig-zag patterns, etc. 10 that may alter the folded or otherwise shortened or compressed footprint of the anchor into various beneficial shapes, such as flower shapes, circular shapes or other rounded shapes, ball shapes or other configurations. Modifications of the manner in which the tensioning member or 15 suture 72 is threaded or otherwise attached along the length of strip 74 may result in higher or lower tensioning force being required to compress the anchor and/or higher or lower friction holding force that may help maintain the anchor in the compressed or shortened configuration. The 20 width of the elongate strip 74' may be varied along its length, such as by tapering, stepping, or forming an hourglass shape or shapes along the length of the strip 14. For example, as illustrated in FIG. 7B, having proximal and distal end portions 75, 77 of wider dimension than an intermediate or 25 middle portion or portions 79 along the length of strip 74' will allow these wider portions 75, 77 may cover over the more intermediate folded portions 79 and prevent unnecessary contact with adjacent tissue during use. It will be appreciated that like reference numerals are used herein to 30 refer to like elements in all embodiments and reference numerals with prime marks (') or double prime marks (") refer to like elements that have been modified in a manner as described herein or otherwise shown in the associated figure. Strip 74 may have variable stiffness including, for 35 example, a relatively rigid perimeter or relatively rigid edges 74e, 74f (FIG. 7) or intermittent relatively rigid sections 74c" separated by flexible sections such as living hinges 74d" (FIG. 7C) that may aid in folding and securing the FIGS. 8A-8D illustrate a series of steps for deploying and securely fastening the tissue anchor 70 of the second embodiment to a layer of tissue 100. Generally, as shown in FIG. 8A, the combination of the elongate strip 74 and tensioning member or suture 72 is deployed through the 45 layer of tissue 100. One end or portion 72a of the suture 72that extends through the slip knot 94 is then pulled. This causes the distal portion 74b of the elongate strip 74 to fold and compress against the distal side of the tissue layer 100. As shown in FIG. 8B, further pulling of the tensioning 50 member 72 causes the slip knot 94 to ride upwardly or distally along the suture 72 and against a proximal portion 74a of the elongate strip 74 thereby folding and compressing the proximal portion 74a against the proximal side of the tissue layer 100 as shown in FIG. 8C. As shown in FIG. 8D, 55 a suitable crimp or locking element 102 may be used to securely lock the slip knot 94 in place relative to the suture or tensioning member segment which extends therethrough. This will lock the entire anchor 70 in place with the respective proximal and distal folded strip portions 74a, 74b 60 securely retaining the tissue layer or layers 100 therebetween. FIG. 8D shows the tip 76 acting as a retainer on top of the distal end portion 74b to assist in holding the distal end portion 74b in place. FIG. 8E shows an alternative in which the
tensioning member is threaded through at least 65 one hole 76a more centrally located in the tip. Yet another alternative would be to thread the tensioning member elongate strip 74" into a folded condition. 10 through two centrally located holes instead of through the proximal end of the tip 76 and one centrally located hole 76a as shown in FIG. 8E. These alternatives allow the tip 76 to act more like a "T"-bar with forces acting in a more perpendicular or normal manner relative to the distal end portion 74b of the strip 74. FIGS. 9A-9C illustrate another alternative embodiment of a plication procedure, for example, for use during annuloplasty on a mitral valve annulus 40a. In this regard, a single tensioning member, such as a suture 103 or other member may be used to deploy, fasten and draw together at least two separate tissue anchors 110. As shown in FIG. 9A, first and second tissue anchors 110 may be respectively deployed at spaced apart locations along the mitral valve annulus 40a. Each tissue anchor 110 includes an elongate strip 114 of flexible material, such as fabric or other material as described above, as well as a single suture 103 or tensioning member extending through each of the elongate strips 114. Upon deployment of the two tissue anchors 110 through the tissue layer 40 at spaced apart locations, the free end of the suture 103 or tensioning member is pulled thereby securely fastening the first tissue anchor 110 as shown in FIGS. 9A and 9B and subsequently securely fastening the second tissue anchor 110 to the annulus tissue 40a. Upon further pulling or tensioning of the suture 103, the tissue anchors 110 will be drawn together to plicate the tissue 40 therebetween as shown in FIG. 9C. A crimp or other locker member 116 may then be used to lock in the desired amount of plication by crimping onto the free end of the suture 103 adjacent to the slip knot 94 of the first tissue anchor 110 as shown in FIG. 9C. The free end of the suture 103 may then be cut to eliminate or reduce the length of the suture tail. FIGS. 10A and 10B illustrate a tissue anchor 70 of the second embodiment, for example, being used to provide an anchor or securement location on only one side of a tissue layer 120. In this regard, the tissue anchor 70 may be extended entirely through the tissue layer(s) 120. The free end of the suture or tensioning member 72 is then pulled proximally to compress and fold the elongate strip 74 against the distal side of the tissue layer 120 as shown in FIG. 10B. It will be appreciated that activation of strip 74 occurs similarly to the other described embodiments, except that the activated portion (that is, the folded or otherwise shortened portion) is located entirely on one side of the tissue layer 120. As illustrated, the intermediate or middle portion between the proximal and distal end portions of the anchor member shortens to adjust to the amount of tissue contained therebetween (if any) or shortens during the compression process on only one side of the tissue. While the present invention has been illustrated by a description of various illustrative embodiments and while these embodiments have been described in some detail, it is not the intention of the Applicant to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications will readily appear to those skilled in the art. The various features of the invention may be used alone or in numerous combinations depending on the needs and preferences of the user. What is claimed is: 1. An apparatus for use with tissue of an annulus of a heart valve of a subject, the apparatus comprising an annuloplasty implant that comprises: an elongate fabric member configured to be anchored to the tissue, and to move between an elongate configuration and a shortened configuration, the fabric member having a first end portion, a second end portion, and a compressible intermediate portion between the first end portion and the second end portion; and a tensioning member: having a first tensioning-member end and a second tensioning-member end. defining a first segment and a second segment by being turned back on itself at a turn such that (i) the first segment extends between the first tensioning-member end and the turn, (ii) the second segment extends between the turn and the second tensioning-member end, and (iii) the second segment is alongside the first segment, and operatively connected to the fabric member by the first segment and the second segment being threaded, along the fabric member and alongside each other, between the first end portion and the second end portion, such that the fabric member can slide relative to the tensioning member, wherein: the turn of the tensioning member is disposed at the ²⁰ second end portion of the fabric member, the operative coupling of the tensioning member to the fabric member is such that tensioning of the tensioning member causes the fabric member to move from the elongate configuration to the shortened configuration by the tensioning member (i) pulling both the first end portion and the second end portion toward the intermediate portion, and (ii) compressing the intermediate portion, and the implant is configured to reshape the annulus of the \$^{30}\$ heart valve. - 2. The apparatus according to claim 1, wherein the fabric member is formed from a material selected from at least one of: natural fibers, synthetic fibers, polymers, and metals. - 3. The apparatus according to claim 2, wherein the ³⁵ tensioning member further comprises a suture. - **4**. The apparatus according to claim **1**, wherein the tensioning member further comprises a suture. - **5**. The apparatus according to claim **1**, wherein the tensioning member includes a stop member engageable with ⁴⁰ the fabric member. - **6**. The apparatus according to claim **5**, wherein the stop member further comprises a knot in the tensioning member. - 7. The apparatus according to claim 1, wherein the tensioning member extends through the fabric member at 45 multiple locations between the first end portion and the second end portion. - **8**. The apparatus according to claim **1**, wherein the fabric member and the tensioning member are configured such that the fabric member forms at least one fold upon pulling the ⁵⁰ first tensioning-member end. - **9**. The apparatus according to claim **1**, further comprising a lock member engageable with the tensioning member to retain the fabric member in the shortened configuration. - **10**. The apparatus according to claim **1**, further comprising at least one radiopaque marker on at least one of the fabric member and the tensioning member. - 11. The apparatus according to claim 1, further comprising a first radiopaque marker located proximate the first end portion of the fabric member is in the shortened configuration and a second radiopaque marker located proximate the second end portion when the fabric member is in the shortened configuration. - 12. The apparatus according to claim 1, wherein the implant comprises a tip at the second end portion, the tip 65 being narrower and more rigid than the fabric member. 12 - 13. The apparatus according to claim 12, wherein the tip acts as a compressive force applying member against the second end portion of the fabric member when the fabric member is in the shortened configuration. - 14. The apparatus according to claim 1, wherein the fabric member varies in width along its length when in the elongate configuration. - **15**. The apparatus according to claim **1**, wherein the fabric member includes an edge portion that is more rigid than a central area of the fabric member. - 16. The apparatus according to claim 1, wherein at least the first tensioning-member end is disposed at the first end portion of the fabric member. - 17. The apparatus according to claim 1, further comprising a catheter device, wherein the annuloplasty implant is configured to be transluminally delivered to the heart valve through the catheter device, with the second end portion distal to the first end portion, such that deployment of the annuloplasty implant from the catheter device exposes the second end portion prior to the first end portion. - 18. The apparatus according to claim 1, further comprising a catheter device configured to facilitate securing of the second end portion to the tissue, and to facilitate securing of the first end portion to the tissue subsequently to the securing of the second end portion to the tissue. - **19**. A system for use with tissue of an annulus of a heart valve of a subject, the system comprising: an annuloplasty implant that comprises: - an elongate fabric member configured to be anchored to the tissue, and to move between an elongate configuration and a shortened configuration, the fabric member having a first end portion, a second end portion, and a compressible intermediate portion between the first end portion and the second end portion; and - a tensioning member having a first tensioning-member end and a second tensioning-member end, defining a first segment and a second segment by being turned back on itself at a turn such that (i) the first segment extends between the first tensioning-member end and the turn, (ii) the second segment extends between the turn and the second tensioning-member end, and (iii) the second segment is alongside the first segment, and operatively connected to the fabric member by the first segment and the second segment being threaded, along the fabric member and alongside each other, between the first end portion and the second end portion, such that the fabric member can slide relative to the tensioning member; and - a catheter device configured to facilitate securing of the second end portion to the tissue, and to facilitate securing of the first end portion to the tissue subsequently to the securing of the second end portion to the tissue: - wherein the turn of the
tensioning member is disposed at the second end portion of the fabric member, the operative coupling of the tensioning member to the fabric member is such that tensioning of the tensioning member causes the fabric member to move from the elongate configuration to the shortened configuration by the tensioning member (i) pulling both the first end portion and the second end portion toward the intermediate portion, and (ii) compressing the intermediate portion, and the implant is configured to reshape the annulus of the heart valve. * * * * *